NTSB Recommends Improvements for Certifying Lithium-ion Batteries

The agency determined that shortcomings in design and certification led to the fire in a battery being installed on a Boeing 787.

According to a report from the National Transportation Safety Board, shortcomings in design and certification led to the fire in a lithium-ion battery installed on a Boeing 787 jetliner that had just completed intercontinental flight to Boston.

Early in the investigation, the NTSB said that the fire began after one of the battery's eight cells experienced an internal short circuit leading to thermal runaway of the cell, which propagated to the remaining cells, causing full battery thermal runaway. This condition caused smoke and flammable materials to be ejected outside the battery's case and resulted in excessive heat and a small fire.

"The investigation identified deficiencies in the design and certification processes that should have prevented an outcome like this," said NTSB Acting Chairman Christopher A. Hart. "Fortunately, this incident occurred while the airplane was on the ground and with firefighters immediately available."

Investigators said that Boeing's safety assessment of the battery, which was part of the data used to demonstrate compliance with these special conditions, was insufficient because Boeing had considered, but ruled out, cell-to-cell propagation of thermal runaway but did not provide the corresponding analysis and justification in the safety assessment.

As a result of its findings, the NTSB is recommending that the FAA improve the guidance and training provided to industry and FAA certification engineers on safety assessments and methods of compliance for designs involving new technology.

"Through comprehensive incident investigations like this one, safety deficiencies can be uncovered and addressed before they lead to more serious consequences in less benign circumstances," said Hart.

Download Center

  • Safety Metrics Guide

    Is your company leveraging its safety data and analytics to maintain a safe workplace? With so much data available, where do you start? This downloadable guide will give you insight on helpful key performance indicators (KPIs) you should track for your safety program.

  • Job Hazard Analysis Guide

    This guide includes details on how to conduct a thorough Job Hazard Analysis, and it's based directly on an OSHA publication for conducting JHAs. Learn how to identify potential hazards associated with each task of a job and set controls to mitigate hazard risks.

  • A Guide to Practicing “New Safety”

    Learn from safety professionals from around the world as they share their perspectives on various “new views” of safety, including Safety Differently, Safety-II, No Safety, Human and Organizational Performance (HOP), Resilience Engineering, and more in this helpful guide.

  • Lone Worker Safety Guide

    As organizations digitalize and remote operations become more commonplace, the number of lone workers is on the rise. These employees are at increased risk for unaddressed workplace accidents or emergencies. This guide was created to help employers better understand common lone worker risks and solutions for lone worker risk mitigation and incident prevention.

  • EHS Software Buyer's Guide

    Learn the keys to staying organized, staying sharp, and staying one step ahead on all things safety. This buyer’s guide is designed for you to use in your search for the safety management solution that best suits your company’s needs.

  • Vector Solutions

OH&S Digital Edition

  • OHS Magazine Digital Edition - June 2022

    June 2022

    Featuring:

    • SAFETY CULTURE
      Corporate Safety Culture Is Workplace Culture
    • HEAT STRESS
      Keeping Workers Safe from Heat-Related Illnesses & Injuries
    • EMPLOYEE HEALTH SCREENING
      Should Employers Consider Oral Fluid Drug Testing?
    • PPE FOR WOMEN
      Addressing Physical Differences
    View This Issue