Nanoparticles in Kitchens More Prevalent Than Previously Detected

Extremely small nanoscale particles are released by common kitchen appliances in abundant amounts, greatly outnumbering the previously detected, larger-size nanoparticles emitted by these appliances, according to new findings by researchers at the National Institute of Standards and Technology (NIST).

So-called "ultrafine particles" (UFP) range in size from 2 to 10 nanometers. They are emitted by motor vehicles and a variety of indoor sources and have attracted attention because of increasing evidence that they can cause respiratory and cardiovascular illnesses.

NIST researchers conducted a series of 150 experiments using gas and electric stoves and electric toaster ovens to determine their impacts on indoor levels of nano-sized particles. Previous studies have been limited to measuring particles with diameters greater than 10 nm, but new technology used in these experiments allowed researchers to measure down to 2 nm particles -- approximately 10 times the size of a large atom.

This previously unexplored range of 2 to 10 nm contributed more than 90 percent of all the particles produced by the electric and gas stovetop burners/coils. The gas and electric ovens and the toaster oven produced most of their UFP in the 10 nm to 30 nm range.

The results of this test should affect future studies of human exposure to particulates and associated health effects, particularly since personal exposure to these indoor UFP sources can often exceed exposure to the outdoor UFP.

Researchers will continue to explore the production of UFP by indoor sources. Many common small appliances such as hair dryers, steam irons and electric power tools include heating elements or motors that may produce UFP. People often use these small appliances at close range for relatively long times, so exposure could be large even if the emissions are low.

Download Center

  • Safety Metrics Guide

    Is your company leveraging its safety data and analytics to maintain a safe workplace? With so much data available, where do you start? This downloadable guide will give you insight on helpful key performance indicators (KPIs) you should track for your safety program.

  • Job Hazard Analysis Guide

    This guide includes details on how to conduct a thorough Job Hazard Analysis, and it's based directly on an OSHA publication for conducting JHAs. Learn how to identify potential hazards associated with each task of a job and set controls to mitigate hazard risks.

  • A Guide to Practicing “New Safety”

    Learn from safety professionals from around the world as they share their perspectives on various “new views” of safety, including Safety Differently, Safety-II, No Safety, Human and Organizational Performance (HOP), Resilience Engineering, and more in this helpful guide.

  • Lone Worker Safety Guide

    As organizations digitalize and remote operations become more commonplace, the number of lone workers is on the rise. These employees are at increased risk for unaddressed workplace accidents or emergencies. This guide was created to help employers better understand common lone worker risks and solutions for lone worker risk mitigation and incident prevention.

  • EHS Software Buyer's Guide

    Learn the keys to staying organized, staying sharp, and staying one step ahead on all things safety. This buyer’s guide is designed for you to use in your search for the safety management solution that best suits your company’s needs.

  • Vector Solutions

Featured Whitepaper

OH&S Digital Edition

  • OHS Magazine Digital Edition - July August 2022

    July / August 2022

    Featuring:

    • CONFINED SPACES
      Specific PPE is Needed for Entry and Exit
    • HAZARD COMMUNICATION
      Three Quick Steps to Better HazCom Training
    • GAS DETECTION
      Building a Chemical Emergency Toolkit
    • RESPIRATORY PROTECTION
      The Last Line of Defense
    View This Issue