NTSB determined that the June 22, 2009, collision of a WMATA train with another stopped train resulted from a failure of the track circuit modules that caused the automatic train control system to lose detection of the stopped train; the board also faulted WMATA

NTSB's Chair: Be Aware of Automation's Shortcomings

One example he cites is a 2009 collision of a WMATA train with a train stopped near the Fort Totten station. The safety board determined it resulted from a failure of the track circuit modules that caused the automatic train control system to lose detection of the stopped train.

An interesting Aug. 8 blog post by Christopher Hart, who chairs the National Transportation Safety Board, discusses the potential of driverless vehicles and automation to make U.S. transportation safer. Automation alone is not foolproof, Hart stresses, and he cites as an example a 2009 collision of a WMATA train with a train stopped near the Fort Totten station. The safety board determined the crash resulted from a failure of the track circuit modules that caused the automatic train control system to lose detection of the stopped train, and it also faulted WMATA's lack of a safety culture.

Hart, who wrote that the post is based on a speech he gave in June 2016 at the National Press Club, notes that technological advances have made motor vehicles much safer in recent decades – seat belts, air bags, and structural crush resistance "have undoubtedly saved thousands of lives a year," he writes. "Now we have the exciting opportunity to use technological advances to prevent crashes from happening in the first place, which can save tens of thousands of lives a year. But because automation will coexist with human drivers for the foreseeable future, there will be many challenges. Driverless cars could save many, if not most, of the 33,000 lives that are lost every year on our streets and highways – a very tragic and unacceptable number that has been decreasing for several years but has recently taken a turn in the wrong direction.

"Most crashes on our roads are due to driver error. The theory of driverless cars is that if there is no driver, there will be no driver error. Ideally, removing the driver would address at least four issues on the NTSB's Most Wanted List of Transportation Safety Improvements – fatigue, distractions, impairment, and fitness for duty. The automation in driverless cars would presumably also address a fifth item on our list, namely, improved collision avoidance technologies," he continues. "Decades of experience in a variety of contexts has demonstrated that automation can improve safety, reliability, productivity, and efficiency. That experience has also demonstrated that there can be a downside. As noted by Professor James Reason, who is a world-renowned expert in complex human-centric systems: In their efforts to compensate for the unreliability of human performance, the designers of automated control systems have unwittingly created opportunities for new error types that can be even more serious than those they were seeking to avoid."

Hart writes that NTSB's investigations provide three lessons learned that support Reason's statement. One is that the theory of removing human error by removing the human assumes that the automation is working as designed. Another is that, even if the operator is removed from the loop, humans are still involved in designing, manufacturing, and maintaining vehicles and the streets and highways they use , so at each point there are opportunities for human error.

"The most fundamental lesson learned from our accident investigation experience in support of Prof. Reason's statement is that introducing automation into complex human-centric systems can be very challenging. Most of the systems we have investigated are becoming increasingly automated but are not fully automated. As a result, we have seen that the challenges can be even more difficult in a system that is not completely automated but still has substantial human operator involvement," he writes.

Hart then discusses how NTSB can help to inform the process of moving toward driverless cars.

Product Showcase

  • SECUPRO MARTEGO

    FOR HIGHEST DEMANDS. A cutting tool in which function and design go hand in hand. Meet the SECUPRO MARTEGO, our prize-winning squeeze-grip safety knife with fully automatic retractable blade for safety. • Ergonomically friendly trigger mechanism to engage the blade • Durable body made of aluminum • Safer alternative to fixed blade utility knives for general cutting tasks • 9 mm Cutting depth • Easy, tool free blade change Dimensions: L 6.10" L x 0.71" W x 1.91" H Weight: 3.70 oz Cutting Depth: 9 mm Read More

  • Glove Guard® Clip

    Safety should never be compromised, especially when it comes to proper glove usage. The Glove Guard® clip enhances safety by encouraging employees to keep their gloves with them at all times. This reduces the risk of accidents and injuries on the job. By ensuring everyone has their gloves readily available, we help promote a culture of safety and efficiency. The Glove Guard® clip is designed to withstand the toughest work environments. Constructed from robust materials made in the USA, it can endure extreme conditions, including harsh weather, and rigorous activities. Read More

  • Matrix's OmniPro Vision AI Collision Avoidance System

    OmniPro Vision AI is a state-of-the-art collision avoidance system that features NIOSH award-winning Visual Artificial Intelligence (AI) technology. This highly accurate, powerful system identifies and alerts on pedestrians, vehicles and specified objects, ensuring safer facilities, mining operations and industrial sites. With its web-based cloud application, OmniPro Vision AI also logs and analyzes a wide range of data related to zone breach notifications. Operating without needing personal wearable devices or tags, OmniPro has visual and audible zone breach alerts for both operators and pedestrians. Read More

Featured

Artificial Intelligence