Understanding EN and NFPA Standards for Chemical Protective Suits

To ensure maximum protection for hazmat and emergency personnel, organizations should specify suits that meet both EN 943 and NFPA 1991.

Preparedness is the watchword for any professional who puts his or her life on the line to deal with chemical spills, accidents, and other dangerous situations. While training is important, when a hazmat suit is the only thing standing between a first responder and harmful chemicals or gases, the performance of the protective suit is absolutely vital. Past chemical industrial disasters and incidents have served as real-life lessons, helping to demonstrate the needs, risks, and challenges facing emergency response teams and driving safety and performance standards, as well as innovation in the protective fabric industry.

Depending on where they are sold, chemical protective suits must comply with specific regional standards that ensure they meet stringent performance requirements. For example, EN certification is required in Europe, while NFPA is the primary certification standard for protective suits and equipment in the United States and Canada. To meet these standards, protective suits and equipment are exposed to harsh conditions simulating the actual threats responders might face in the field, such as extreme temperatures, chemical exposure, and abrasion.

While both EN and NFPA standards provide a guaranteed level of safety and performance, it is important to note they are not the same. Each certification requires different testing procedures, each with its own methodology to simulate real-life hazmat incidents. In order to ensure they procure the best equipment for their emergency response teams, it is essential that organizations and companies understand the two main international certifications in hazmat suits, EN 943 and NFPA 1991, as well as the differences between them, including the tests performed and minimum performance requirements.

Certification Overview
Throughout Europe, the certification standards are defined and maintained by the European Committee for Standardization (CEN). The highly respected EN 943 standard covers protective clothing against liquid and gaseous chemicals, including liquid aerosols and solid particles with a specific section EN 943-2 dealing with chemical protective suits for emergency responders and firefighters.

The leading advocate for fire prevention and public safety in the United States and Canada is the National Fire Protection Association, which has developed codes and standards aimed at minimizing the occurrence and effects of fire and other hazardous threats. The highest level of certification available in North America, NFPA 1991 specifies the minimum design, manufacture, and performance requirements for vapor-protective ensembles and individual elements for chemical vapor protection. NFPA 1991 certification sets standards for chemical permeation, vapor tightness, flame resistance, and material durability. In addition, NFPA 1991 includes optional criteria for chemical flash fire escape and liquefied gas protection. However, NFPA 1991 is not the only benchmark for personal protective equipment (PPE) available.

The differences between European and North American standards begin with the various PPE classifications. In the United States, for example, hazmat protective clothing is classified by OSHA as Level A, B, C, or D based on the degree of protection provided. Level A, the highest level of protection against vapors, gases, mists, and particles, applies to fully encapsulating chemical entry suits with a built-in breathing apparatus.

Meanwhile, under the European Union Council Directive 9/686/EEC on PPE, protective clothing is divided into six classes. Type 6 is the most basic level of protective clothing for dust and dirt nuisances, while Type 1 refers to fully encapsulating protective clothing. In addition, current European directives require that all PPE have the European Conformity (CE) approval and label, regardless of type and category. There is no such requirement for approved equipment in North America.

Testing Differences
Emergency responders and industrial employees throughout the world prepare for similar real-life situations and as a result, many of the tests performed under EN 943 and NFPA 1991 certification are similar, including those for gas-tight integrity, flame resistance, and chemical permeation against many of the same toxic chemicals and gases. These tests seek to simulate actual scenarios, such as emergency responses, fires, chemical spills, and terrorist incidents with the release of poisonous gases or chemicals.

However, when comparing the two certifications, it is important to understand the different test methodologies and minimum performance requirements to ensure a suit provides the maximum protection for an intended application. Detailed comparison of the test requirements results in five key areas of performance evaluation:

  • Chemical permeation testing. For chemical permeation testing, EN 943 and NFPA 1991 use the same test methodology. However, EN 943 has a less severe minimum permeation detection level of 1.0mg/cm2/min versus the NFPA 1991 level of 0.1mg/cm2/min. In addition, NFPA 1991 requires preconditioning prior to chemical permeation testing, while EN 943 testing does not. This means that NFPA 1991-certified materials are subjected to the physical stresses of both flexing and abrasion of outer surface with coarse sandpaper repeatedly before actual permeation testing. High-performance protective suits are NFPA 1991 certified, having been put through this rigorous abrasion preconditioning before chemical permeation testing, but other suits rely on an aluminum oversuit or cover to meet this requirement.
  • Gases and chemical warfare agents. NFPA 1991 chemical testing covers a much broader spectrum of chemicals than EN 943. It covers all of the chemicals listed in EN 943 except for heptane and additionally specifies only one-tenth chemical permeation detection level requirements. NFPA 1991-certified suits are tested against 19 toxic industrial chemicals, six gases, and two warfare agents, while EN 943 covers 12 toxic industrial chemicals and three gases and does not test at all for chemical warfare agents.
  • Pressure testing. Gas-tight integrity -- vital for any protective suit that may come into contact with toxic chemicals and gases -- can be determined only by performing a pressure or inflation test and a leak detection test of the protective suit. This ensures not only that base suit material is gas-tight, but also that all seams and joints are equally gas-tight. This test typically involves closing off suit exhalation valves and inflating the suit to a specified pressure to observe whether or not the suit holds that pressure for a designated period of time. Both tests involve pre-inflating the suit at an elevated pressure; while this is only one minute for NFPA 1991, it is 10 minutes under the EN standard. More importantly, EN 943 features a six-minute test period at 1650 Pa (6.6 inches water pressure), while the NFPA 1991 test is for four minutes' duration at 1000 Pa (4 inches water pressure). The standards are similar in not allowing any more than 20 percent loss of starting pressure during the test period, although actual results on suits in use should be well above these thresholds for maximum reliability.
  • Flame and flash resistance. EN 943 certification does not include any test for flash fire resistance and only requires very limited flame resistance (1 second). NFPA 1991 certification involves more rigorous flame and burn testing and has the optional test of flash fire resistance. Interestingly, some suits that meet the requirements of EN943-2 do not meet the NFPA 1991 standard unless they are equipped with a second aluminized oversuit, which significantly reduces comfort and dexterity and increases weight and bulk. Flash fire resistance is an optional requirement met by some suits. The test method includes putting the ensemble onto a mannequin in a sealed, propane-filled flash chamber. The suit is then subjected to a remotely ignited, six- to eight-second burn and must exhibit airtight integrity, thermal insulation, and visual acuity following the exposure to meet minimum standards, all in addition to the requirement for no after flame.
  • Hand protection. Protective suit accessories, such as visors, seams, and gloves, also need to be manufactured using highly protective textiles and materials. Both NFPA 1991 and EN 943-2 certifications require gloves to meet a high level of chemical and permeation resistance. NFPA 1991 has set much higher standards for cut and puncture resistance, which require that an outer glove be worn in addition to the chemical barrier glove. In most cases, two barrier gloves (a film inner and elastomer outer glove) are worn to obtain the full range of chemical protection and breakthrough times. However, innovative solutions are able to offer this puncture resistance and chemical permeation resistance in a single-piece construction.

Though unintentional, chemical industrial disasters and incidents happen and unfortunately CBRN terrorist acts are a real and ongoing reality. As a result, there is a wide variety of innovative protective suits and equipment on the market meeting a range of safety and performance standards. To keep emergency responders and industrial employees safe in the event that the use of PPE become necessary, it is critical to understand the various certifications, testing, and performance requirements. These factors will assist emergency service professionals and procurement groups to determine which suit is most appropriate for their needs, ensuring that emergency response teams and employees are able to do their jobs as safely and effectively as possible., EN 943 and NFPA 1991 are widely considered to be the global gold standards in PPE performance for gas- and liquid-tight chemical protective clothing, but key differences need to be clearly understood. In order to ensure maximum protection that provides the highest level of safety for hazmat and emergency personnel, organizations and companies should specify suits that meet both EN 943 and NFPA 1991 and certification requirements.

This article originally appeared in the December 2012 issue of Occupational Health & Safety.

About the Author

Ian Hutcheson, Market Manager Protective & Fabricated Systems Europe at Saint-Gobain Performance Plastics, is responsible for strategy and business development across Europe, the Middle East, and Africa. He has more than 25 years' experience in the field of engineered plastics and technical textiles. Before working at Saint-Gobain Performance Plastics, he worked for Chemfab Corporation, specializing in sales, marketing, and product development, and was export sales manager at PPI Adhesive Products Ltd.

Download Center

  • Safety Metrics Guide

    Is your company leveraging its safety data and analytics to maintain a safe workplace? With so much data available, where do you start? This downloadable guide will give you insight on helpful key performance indicators (KPIs) you should track for your safety program.

  • Job Hazard Analysis Guide

    This guide includes details on how to conduct a thorough Job Hazard Analysis, and it's based directly on an OSHA publication for conducting JHAs. Learn how to identify potential hazards associated with each task of a job and set controls to mitigate hazard risks.

  • A Guide to Practicing “New Safety”

    Learn from safety professionals from around the world as they share their perspectives on various “new views” of safety, including Safety Differently, Safety-II, No Safety, Human and Organizational Performance (HOP), Resilience Engineering, and more in this helpful guide.

  • Lone Worker Safety Guide

    As organizations digitalize and remote operations become more commonplace, the number of lone workers is on the rise. These employees are at increased risk for unaddressed workplace accidents or emergencies. This guide was created to help employers better understand common lone worker risks and solutions for lone worker risk mitigation and incident prevention.

  • EHS Software Buyer's Guide

    Learn the keys to staying organized, staying sharp, and staying one step ahead on all things safety. This buyer’s guide is designed for you to use in your search for the safety management solution that best suits your company’s needs.

  • Vector Solutions

Featured Whitepaper

OH&S Digital Edition

  • OHS Magazine Digital Edition - July August 2022

    July / August 2022


      Specific PPE is Needed for Entry and Exit
      Three Quick Steps to Better HazCom Training
      Building a Chemical Emergency Toolkit
      The Last Line of Defense
    View This Issue