According to the World Health Organization, an estimated 225 million malaria cases occur worldwide annually, resulting in about 781,000 deaths.

Study: Mosquito Gut Bacteria Can Block Malaria Infection

In a new study, scientists found that among the various types of bacteria in the mosquito gut, a type of bacteria that occurs in some but not all mosquitoes effectively blocked infection with a malaria-causing parasite.

Scientists have identified a class of naturally occurring bacteria that can strongly inhibit malaria-causing parasites in Anopheles mosquitoes, a finding that could have implications for efforts to control malaria. The study appears in the May 13 edition of Science. The research was partly funded by the National Institute of Allergy and Infectious Diseases (NIAID), a component of the National Institutes of Health.

According to the World Health Organization, an estimated 225 million malaria cases occur worldwide annually, resulting in about 781,000 deaths. Although the disease is present in 106 countries, most cases occur in sub-Saharan Africa. Insect repellent and bed nets can help prevent transmission of the malaria parasite from mosquitoes to humans, but to control malaria one step earlier, some studies are looking to eliminate infection within the mosquito itself.

Normally, when a malaria parasite infects a mosquito, it travels to the insect’s gut, where its chances for survival are slim because the mosquito’s immune system, digestive enzymes, and resident bacteria create a hostile environment. In their new study, the scientists found that among the various types of bacteria in the mosquito gut, Enterobacter—a type of bacteria that occurs in some but not all mosquitoes—effectively blocked infection with the malaria-causing parasite Plasmodium falciparum.

“This discovery may explain why some mosquitoes are better than others at transmitting malaria to humans, even when they are of the same species,” explained NIAID Director Anthony S. Fauci, M.D.

The Hopkins researchers found that in the presence of Enterobacter, various developmental stages of the P. falciparum parasite—including the stage that is transmitted to humans through a mosquito bite—were reduced by 98 to 99 percent.

“Our study used a laboratory method of P. falciparum infection, which causes stronger infections than those that take place in a natural environment,” said George Dimopoulos, Ph.D., of the Bloomberg School of Public Health and the Malaria Research Institute, both of Johns Hopkins University, Baltimore. “We believe that in a natural situation, where infection levels are much lower, this bacterium would eliminate the parasite. Further, there is no evidence that Enterobacter is toxic to either mosquitoes or humans.”

By observing the interaction between the bacteria and the parasite, the scientists determined that Enterobacter inhibits parasite growth by producing short-lived molecules known as reactive oxygen species (ROS). Although ROS travel through body fluids in the mosquito, they do not need to be in a mosquito to inhibit parasites.

“If we can find a correlation between mosquitoes’ malaria infection status and the presence or absence of a particular bacterium, it may suggest that the bacterium inhibits malaria parasites,” Dimopoulos said. Identifying a variety of malaria-inhibiting bacteria would be especially useful since not all mosquitoes have Enterobacter in their guts.

The researchers hope to apply their findings to the field, where they would first modify Enterobacter for use in mosquitoes. The next step would be to strategically place the bacteria in the mosquitoes’ natural environment, such as in their sugar food sources or breeding sites. Although these strategies have not yet been tested in malaria prevention, sugar baits have been used successfully to expose mosquitoes to toxins.

For more information about NIAID’s malaria research, see the NIAID Malaria Web portal.

Product Showcase

  • AirChek Connect Sampling Pump

    Stay connected to your sampling with the SKC AirChek® Connect Sampling Pump! With its Bluetooth connection to PC and mobile devices, you can monitor AirChek Connect pump operation without disrupting workflow. SKC designed AirChek Connect specifically for all OEHS professionals to ensure accurate, reliable flows from 5 to 5000 ml/min and extreme ease of use. AirChek Connect offers easy touch screen operation and flexibility. It is quality built to serve you and the workers you protect. Ask about special pricing and a demo at AIHA Connect Booth 1003. Read More

  • NoiseCHEK Personal Noise Dosimeter

    SKC NoiseCHEK is the easiest-to-use dosimeter available! Designed specifically for OEHS professionals, SKC NoiseCHEK offers the easiest operation and accurate noise measurements. Everything you need is right in your palm. Pair Bluetooth models to your mobile devices and monitor workers remotely with the SmartWave dB app without interrupting workflow. Careful design features like a locking windscreen, sturdy clip, large front-lit display, bright status LEDs, and more make NoiseCHEK the top choice in noise dosimeters. Demo NoiseCHEK at AIHA Connect Booth 1003. Read More

  • Kestrel 5400 Heat Stress Tracker WBGT Monitoring for Workplace Safety

    Ensure safety with the Kestrel® 5400 Heat Stress Tracker, the go-to choice for safety professionals and endorsed by the Heat Safety & Performance Coalition. This robust, waterless WBGT meter is ideal for both indoor and outdoor environments, offering advanced monitoring and data logging essential for OSHA compliance. It features pre-programmed ACGIH guidelines and alert settings to quickly signal critical conditions. Integrated with the cloud-based Ambient Weather Network, the 5400 allows managers to view, track, and log job site conditions remotely, ensuring constant awareness of potential hazards. Its capability for real-time mobile alerts and remote data access promotes proactive safety management and workplace protection, solidifying its role as a crucial tool in industrial hygiene. Read More

Featured

Artificial Intelligence