Robots Designed to Save Lives of Construction Workers Win Grand Prize

The Robotics and Mechanisms Laboratory (RoMeLa) of the College of Engineering at Virginia Tech won the grand prize at the 2008 International Capstone Design Fair with a trio of pole-climbing serpentine robots designed to take the place of construction workers tasked with dangerous jobs such as inspecting high-rises or underwater bridge piers.

Team RoMeLa scored the cash prize of 1 million won (won is the currency of South Korea) with its robots, the HyDRAS-Ascent (Hyper-redundant Discrete Robotic Articulated Serpentine for climbing), the HyDRAS-Ascent II, and CIRCA (Climbing Inspection Robot with Compressed Air), at the 2008 International Symposium on Educational Excellence 2008 competition. The event took place at Seoul National University of Technology in South Korea.

"The autonomous robots are designed to climb scaffolding and buildings by wrapping around a poll or beam and then rolling upward via an oscillating joint motion. Using built-in sensors and cameras, the robots would then inspect the structures or handle other dangerous tasks now done by humans," said Dennis Hong, director of Virginia Tech's Robotics and Mechanisms Laboratory and the faculty adviser on the project.

The robots are each roughly three feet in length and use a movement unique even in nature. The need for autonomous tools in the construction field is great. Hong cites a 2006 U.S. Bureau of Labor Statistics report that tracked the workplace deaths of 1,226 construction workers in 2006, an increase of 3 percent from 2005. The same report listed 809 deaths as a result of falls from raised structures such as scaffolding, Hong said.

The HyDRAS robots operate using electric motors, while the CIRCA robot uses a compressed air muscle. "The use of compressed air makes this approach feasible by enabling it to be light weight, providing compliant actuation force for generating the gripping force for traction, and allowing it to use a simple discrete control scheme to activate the muscles in a predetermined sequence," Hong said. For now, the robots operate by a tethered wire attached to a laptop, but Hong and his students are reconfiguring the devices to function independently using an onboard microprocessor and power source.

"This family of novel robots will serve as a practical inspection tool for construction sites without putting workers in harm's way," he added.

The robots were developed by mechanical engineering students Gabriel Goldman of Richmond, Va., and Nick Thayer of Poquoson, Va., who are both currently pursuing mechanical engineering doctoral degrees at Virginia Tech. The remaining student developers, all of which are recent graduates, are Michael Bloom, Florian Böss, Cory Kaser, Vic Kassoff, David McDowell, Spencer Patton, and Jeff Philis.

Product Showcase

  • SlateSafety BAND V2

    SlateSafety BAND V2

    SlateSafety's BAND V2 is the most rugged, easy-to-use connected safety wearable to help keep your workforce safe and help prevent heat stress. Worn on the upper arm, this smart PPE device works in tandem with the SlateSafety V2 system and the optional BEACON V2 environmental monitor. It includes comprehensive, enterprise-grade software that provides configurable alert thresholds, real-time alerts, data, and insights into your safety program's performance all while ensuring your data is secure and protected. Try it free for 30 days. 3

Featured

Webinars