Study: Drivers Are Distracted Even if They Don't Talk on Cell Phone

Carnegie Mellon University scientists have found that just listening to a cell phone while driving is a significant distraction, and it causes drivers to commit some of the same types of driving errors that can occur under the influence of alcohol.

The use of cell phones, including dialing and texting, has long been a safety concern for drivers. But the Carnegie Mellon study, for the first time, used brain imaging to document that listening alone reduces by 37 percent the amount of brain activity associated with driving. This can cause drivers to weave out of their lane, based on the performance of subjects using a driving simulator.

The findings, to be reported in an upcoming issue of the journal Brain Research, show that making cell phones hands-free or voice-activated is not sufficient in eliminating distractions to drivers. "Drivers need to keep not only their hands on the wheel; they also have to keep their brains on the road," said neuroscientist Marcel Just, director of the Center for Cognitive Brain Imaging.

Other distractions, such as eating, listening to the radio or talking with a passenger, also can divert a driver. Though it is not known how these activities compare to cell phone use, Just said there are reasons to believe cell phones may be especially distracting. "Talking on a cell phone has a special social demand, such that not attending to the cell conversation can be interpreted as rude, insulting behavior," he noted. A passenger, by contrast, is likely to recognize increased demands on the driver's attention and stop talking.

The 29 study volunteers used a driving simulator while inside an MRI brain scanner. They steered a car along a virtual winding road at a fixed, challenging speed, either while they were undisturbed, or while they were deciding whether a sentence they heard was true or false. Just's team used state-of-the-art functional magnetic resonance imaging (fMRI) methods to measure activity in 20,000 brain locations, each about the size of a peppercorn. Measurements were made every second.

The driving-while-listening condition produced a 37 percent decrease in activity of the brain's parietal lobe, which is associated with driving. This portion of the brain integrates sensory information and is critical for spatial sense and navigation. Activity was also reduced in the occipital lobe, which processes visual information.

The other impact of driving-while-listening was a significant deterioration in the quality of driving. Subjects who were listening committed more lane maintenance errors, such as hitting a simulated guardrail, and deviating from the middle of the lane. Both kinds of influences decrease the brain's capacity to drive well, and that decrease can be costly when the margin for error is small.

"The clear implication is that engaging in a demanding conversation could jeopardize judgment and reaction time if an atypical or unusual driving situation arose," Just said. "Heavy traffic is no place for an involved personal or business discussion, let alone texting."

Because driving and listening draw on two different brain networks, scientists had previously suspected that the networks could work independently on each task. But Just said this study demonstrates that there is only so much that the brain can do at one time, no matter how different the two tasks are.

The study emerges from the new field of neuroergonomics, which combines brain science with human-computer interaction studies that measure how well a technology matches human capabilities. Neuroergonomics is beginning to be applied to the operation of vehicles like aircraft, ships and cars in which drivers now have navigation systems, iPods and even DVD players at their disposal. Every additional input to a driver consumes some of his or her brain capacity, taking away some of the resources that monitor for other vehicles, lane markers, obstacles, and sudden changes in conditions.

"Drivers' seats in many vehicles are becoming highly instrumented cockpits, and during difficult driving situations, they require the undivided attention of the driver's brain," Just said.

Industrial Hygiene Product Showcase

  • Ventis® Pro5

    Ventis® Pro5

    The Ventis Pro5 is the most flexible connected gas monitor on the market, giving you the power to protect workers from up to five gases, manage worker safety from remote locations, and simplify team communication to take the guesswork out of gas detection. It automatically shares real-time gas readings, man-down, and panic alarms between peers – meaning the entire team knows who is in danger and why. By sharing real-time data, workers can also maintain continuous communication without the need for additional infrastructure or devices. Visit us at AIHce booth #927 to learn more! 3

  • Vaask

    Vaask

    Vaask (V-ahh-sk) is inspired by the Norwegian word for “wash” and embodies the desire for a more modern class of clean. The touchless hand sanitizing fixture provides a superior performance engineered for no drips, no mess. The laser sensor accurately dispenses sanitizer from the 2-liter sanitizer cartridge, refillable with any alcohol-based gel of your choice. Vaask can be customized to complement the design of any space and comes in three mounting options. 3

  • BAND V2

    BAND V2

    SlateSafety’s BAND V2 is the most rugged, easy-to-use connected safety wearable to help prevent heat stress incidents in the workplace. No additional hardware is needed to monitor large teams performing tough jobs across vast worksites. This physiological monitor worn on the upper-arm measures biometric data and sends real-time safety alerts when customized thresholds are met. BAND V2 includes a wide range of functionality such as worker physiological monitoring, real-time location status, automated work/rest cycles and more. Organizations can keep larger workforces safe with real-time, secure and transparent data. Stop by booth #408 at AIHce for a live demonstration! 3

Featured

Webinars