New Study Probes Gulf Oil Spill's Impact

A research team is examining how oil spilled after the Deepwater Horizon drilling rig explosion is affecting organisms living on six shipwrecks located near the Macondo well site.

A research team that includes Chris Horrell, a Historic Preservation Officer and Senior Marine Archaeologist for the federal Bureau of Safety and Environmental Enforcement, has been visiting Gulf of Mexico shipwreck sites this month as its members try to determine how oil spilled after the Deepwater Horizon explosion in 2010 is affecting organisms living on them. All six shipwrecks -- three wooden-hulled sailing ships dating to the 19th century (Ewing Bank wreck, Viosca Knoll wreck, and Mica wreck) and three World War II-era steel-hulled vessels (Halo, Anona, and U-166) -- are relatively close to the Macondo well site where the spill occurred, and they all were discovered and examined before the spill by archaeologists.

Horrell is a co-principal investigator for the project; the study is funded by the Bureau of Ocean Energy Management and involves George Mason University, the University of Mississippi, Louisiana Universities Marine Consortium, the University of Montana, the Naval Research Laboratory, the PAST Foundation, C&C Technologies, and Droycon Bioconcepts.

The crew departed for the first leg of the study March 14 and have posted five daily updates thus far.

According to BSEE, the six shipwrecks were selected for the study based on their proximity to the 2010 oil spill area, availability of pre-spill data for comparison, proximity to known natural hydrocarbon seeps, similar date ranges for the metal-hulled vessels (World War II-era) and wooden-hulled sailing vessels (19th century), and comparable water depths.

Goals of the study are:

  • Assess the chemical, physical, and biological condition of selected shipwrecks in the northern Gulf of Mexico
  • Profile shipwreck microbial communities using Next Generation molecular approaches to assess population structure at oil exposed and unexposed (control) sites
  • Profile shipwreck coral microbiomes using Next Generation molecular approaches to assess population structure at oil exposed and unexposed (control) sites
  • Employ a systems biology approach to understand the interaction of microbial communities at the phylotype level with the surrounding environment (i.e., ship materials, corrosion potential, physicochemical conditions, and oil spill-related contaminants
  • Identify gene function associated with metal corrosion, wood degradation, and hydrocarbon metabolism at select sites to evaluate temporal changes and changes related to the spill
  • Conduct comparisons of the mineralogy and microbiology of rusticles from various shipwrecks to determine whether site specificity exists
  • Conduct comparisons of the mineralogy and microbiology of rusticles from oil exposed and control sites to determine if spill-related degradation products are observed
  • Conduct short-term in situ experiments at oil exposed and control sites to monitor the impact of the Deepwater Horizon spill on in situ corrosion rates, biofilm recruitment and population structure of primary colonizers on experimental platforms
  • Identify and quantify temporal changes in shipwreck site stability and degradation
  • Understand how the shipwrecks and their associated biological communities change over time (spill-exposed and non-exposed)

Product Showcase

  • SECUPRO MARTEGO

    FOR HIGHEST DEMANDS. A cutting tool in which function and design go hand in hand. Meet the SECUPRO MARTEGO, our prize-winning squeeze-grip safety knife with fully automatic retractable blade for safety. • Ergonomically friendly trigger mechanism to engage the blade • Durable body made of aluminum • Safer alternative to fixed blade utility knives for general cutting tasks • 9 mm Cutting depth • Easy, tool free blade change Dimensions: L 6.10" L x 0.71" W x 1.91" H Weight: 3.70 oz Cutting Depth: 9 mm Read More

  • The MGC Simple Plus

    The MGC Simple Plus is a simple-to-use, portable multi gas detector that runs continuously for three years without being recharged or routinely calibrated after its initial charge and calibration during manufacturing. The detector reliably tests a worksite’s atmosphere for hydrogen sulfide, carbon monoxide, oxygen and combustible gases (LEL). Its durability enables the detector to withstand the harshest treatment and environments, hence earning it an IP 68 rating. The MGC Simple Plus is also compatible with a variety of accessories, such as the GCT External Pump. Visit gascliptech.com for more information. Read More

  • Magid® D-ROC® GPD412 21G Ultra-Thin Polyurethane Palm Coated Work Gloves

    Magid’s 21G line is more than just a 21-gauge glove, it’s a revolutionary knitting technology paired with an advanced selection of innovative fibers to create the ultimate in lightweight cut protection. The latest offering in our 21G line provides ANSI A4 cut resistance with unparalleled dexterity and extreme comfort that no other 21-gauge glove on the market can offer! Read More

Featured

Artificial Intelligence