FDA Assesses New Nanotechnology Test to Detect Anthrax

The Food and Drug Administration recently completed a "proof-of-concept" study of a test that quickly and accurately detects the presence of even the smallest amount of the deadly anthrax toxin.

"The FDA findings could form the basis of a test that allows earlier diagnosis of anthrax infection than currently possible," said Indira Hewlett, Ph.D., the senior author of the study and chief of the Laboratory of Molecular Virology, Office of Blood Research and Review, at FDA's Center for Biologics Evaluation and Research (CBER). "The earlier those infected with anthrax can be treated, the better."

A proof-of-concept study is an initial investigation that aims to determine if a new scientific idea or concept holds promise for further development. A report on the results of this study appears in the March issue of Clinical and Vaccine Immunology.

Anthrax is an infectious disease caused by the bacterium Bacillus anthracis, a bacteria that forms spores, or dormant cells, which can come to life under the right temperature, nutrients, and other conditions to allow growth. Anthrax occurs in humans after exposure to an infected animal or infected animal tissue, or when anthrax spores are used as a bioterrorist weapon.

The study developed by FDA researchers relies on a nanotechnology-based test platform built from tiny molecular-sized particles. This assay, the europium nanoparticle-based immunoassay (ENIA), was able to detect the presence of a protein made by the anthrax bacteria known as protective antigen (PA). PA combines with another protein called lethal factor to form anthrax lethal factor toxin, the protein that enters cells and causes toxic effects.

The researchers showed that ENIA is capable of detecting PA in quantities that are 100 times lower than current tests, such as the enzyme-linked immunosorbent assay (ELISA). Both the ELISA and ENIA rely on antibodies that have an affinity for the anthrax protein of interest.

The FDA test is a modified version of ELISA, which is already commonly used to detect anthrax and other infections. The researchers call their new test "europium nanoparticle-based immunoassay" because atoms of europium are key to the assay's sensitivity.

ENIA uses molecular spheres (called nanospheres) covered with thousands of light-emitting atoms of europium that emit light, which acts as a signal that PA is present. The CBER team further enhanced the signal by modifying the nanospheres so they held additional atoms of europium, making the test more sensitive. ENIA detected PA in 100 percent of samples of mouse plasma compared to 36.4 percent through ELISA.

The researchers developed the ENIA for PA in response to the increased interest in the scientific community for new anthrax assays following the 2001 U.S. anthrax attack that killed five people.

Co-authors of the article, "Detection of Anthrax Toxin by an Ultrasensitive Immunoassay Using Europium Nanoparticles," include Jiangqin Zhao (CBER), Mahtab Moayeri, Zhaochun Chen, Haijing Hu, Robert H. Purcell, Stephen H. Leppla (National Institute of Allergy and Infectious Diseases, National Institutes of Health), and Harri Harma (University of Turku, Finland).

Download Center

  • Safety Metrics Guide

    Is your company leveraging its safety data and analytics to maintain a safe workplace? With so much data available, where do you start? This downloadable guide will give you insight on helpful key performance indicators (KPIs) you should track for your safety program.

  • Job Hazard Analysis Guide

    This guide includes details on how to conduct a thorough Job Hazard Analysis, and it's based directly on an OSHA publication for conducting JHAs. Learn how to identify potential hazards associated with each task of a job and set controls to mitigate hazard risks.

  • A Guide to Practicing “New Safety”

    Learn from safety professionals from around the world as they share their perspectives on various “new views” of safety, including Safety Differently, Safety-II, No Safety, Human and Organizational Performance (HOP), Resilience Engineering, and more in this helpful guide.

  • Lone Worker Safety Guide

    As organizations digitalize and remote operations become more commonplace, the number of lone workers is on the rise. These employees are at increased risk for unaddressed workplace accidents or emergencies. This guide was created to help employers better understand common lone worker risks and solutions for lone worker risk mitigation and incident prevention.

  • EHS Software Buyer's Guide

    Learn the keys to staying organized, staying sharp, and staying one step ahead on all things safety. This buyer’s guide is designed for you to use in your search for the safety management solution that best suits your company’s needs.

  • Vector Solutions

Featured Whitepaper

OH&S Digital Edition

  • OHS Magazine Digital Edition - July August 2022

    July / August 2022

    Featuring:

    • CONFINED SPACES
      Specific PPE is Needed for Entry and Exit
    • HAZARD COMMUNICATION
      Three Quick Steps to Better HazCom Training
    • GAS DETECTION
      Building a Chemical Emergency Toolkit
    • RESPIRATORY PROTECTION
      The Last Line of Defense
    View This Issue