EPA Issues Final Yucca Mountain Radiation Standards

EPA established radiation standards for the proposed spent nuclear fuel and high-level radioactive waste disposal facility at Yucca Mountain, Nev. EPA is required to set standards consistent with the findings and recommendations of the National Academy of Sciences (NAS) and satisfy a July 2004 court decision to extend the standards' duration. The agency says Yucca Mountain standards are in line with approaches used in the international radioactive waste management community and will mandate the facility to:

  • Retain the dose limit of 15 millirem per year for the first 10,000 years after disposal;
  • Establish a dose limit of 100 millirem annual exposure per year between 10,000 years and 1 million years;
  • Require the Department of Energy to consider the effects of climate change, earthquakes, volcanoes, and corrosion of the waste packages to safely contain the waste during the 1 million-year period; and
  • Be consistent with the recommendations of the NAS by establishing a radiological protection standard for this facility at the time of peak dose up to 1 million years after disposal.

Human exposure to radiation varies from natural sources, such as radon and ultraviolet radiation from the sun, and other sources, such as medical X-rays. The average annual radiation exposure from both naturally occurring and manmade sources for a person living in the United States has been estimated to be 360 millirem per year.

EPA, DOE, and the Nuclear Regulatory Commission perform different functions related to Yucca Mountain. More information on this action and the roles of the three federal agencies is available on EPA's Web site at www.epa.gov/radiation/yucca.

Download Center

  • Safety Metrics Guide

    Is your company leveraging its safety data and analytics to maintain a safe workplace? With so much data available, where do you start? This downloadable guide will give you insight on helpful key performance indicators (KPIs) you should track for your safety program.

  • Job Hazard Analysis Guide

    This guide includes details on how to conduct a thorough Job Hazard Analysis, and it's based directly on an OSHA publication for conducting JHAs. Learn how to identify potential hazards associated with each task of a job and set controls to mitigate hazard risks.

  • A Guide to Practicing “New Safety”

    Learn from safety professionals from around the world as they share their perspectives on various “new views” of safety, including Safety Differently, Safety-II, No Safety, Human and Organizational Performance (HOP), Resilience Engineering, and more in this helpful guide.

  • Lone Worker Safety Guide

    As organizations digitalize and remote operations become more commonplace, the number of lone workers is on the rise. These employees are at increased risk for unaddressed workplace accidents or emergencies. This guide was created to help employers better understand common lone worker risks and solutions for lone worker risk mitigation and incident prevention.

  • EHS Software Buyer's Guide

    Learn the keys to staying organized, staying sharp, and staying one step ahead on all things safety. This buyer’s guide is designed for you to use in your search for the safety management solution that best suits your company’s needs.

  • Vector Solutions

Featured Whitepaper

OH&S Digital Edition

  • OHS Magazine Digital Edition - May 2022

    May 2022

    Featuring:

    • WEARABLE TECHNOLOGY
      How Wearable Technology is Transforming Safety and the Industrial Workplace
    • TRAINING: CONFINED SPACES
      Five Tips to Improve Safety in Confined Spaces
    • INDUSTRIAL HYGIENE
      Monitor for Asbestos to Help Save Lives
    • PPE: FALL PROTECTION
      Fall Protection Can Be Surprising
    View This Issue