Study: Sea Salt Worsens Coastal Air Pollution

Air pollution in the world’s busiest ports and shipping regions may be markedly worse than previously suspected, according to a new study showing that industrial and shipping pollution is exacerbated when it combines with sunshine and salty sea air.

The paper, “High levels of nitryl chloride in the polluted subtropical marine boundary layer,” is available in the April 6 advance online edition of the journal Nature Geoscience at http://www.nature.com/ngeo/journal/vaop/ncurrent/index.html. The print version is scheduled to appear on May 1. In the study, a team of researchers that included University of Calgary (U of C) chemistry professor Hans Osthoff report that the disturbing phenomenon substantially raises the levels of ground-level ozone and other pollutants in coastal areas.

“We found unexpectedly high levels of certain air pollutants where pollution from cities and ships meets salt in the ocean air along the southeast coast of the United States,” said Osthoff, who joined the U of C’s Department of Chemistry last August. “It only makes sense that this is a problem everywhere industrial pollution meets the ocean, as is the case in many of the largest cities around the world. It also changes our view of the chemical transformations that occur in ship engine exhaust plumes, and tells us that emissions from marine vessels may be polluting the globe to a greater extent than currently estimated.”

Osthoff was part of a National Oceanic and Atmospheric Administration (NOAA) team that spent six weeks monitoring air quality in busy shipping areas off the southeastern coast of the United States between Charleston, South Carolina and Houston, Texas, in the summer of 2006. The researchers found unexpectedly high levels of nitryl chloride (ClNO2), a chemical long suspected to be involved in ground-level ozone production along the coast. They then determined that the compound is efficiently produced at night by the reaction of the nitrogen oxide N2O5 in polluted air with chloride from sea salt. With the help of sunlight, the chemical then splits into radicals that accelerate production of ozone and, potentially, fine particulate matter, which are the main components of air pollution. Their findings also show that up to 30 per cent of the ground-level ozone present in seaside cities such as Houston may be the result of pollution mixing with salt from ocean mist.

Osthoff said he intends to continue to work on halogen compounds at the University of Calgary.

"The Texas study covered only a very limited geographic area. We would like to find out to what extent this chemistry affects air quality in other regions, for example, the the Greater Vancouver area, or the Arctic,” he said. “Our study indicates that halide salts such as chloride or bromide, which have been thought of as being relatively inert, may be playing a much greater role overall in the lower atmosphere."

Product Showcase

  • Full Line of Defense Against Combustible Dust Nilfisk

    Nilfisk provides a comprehensive range of industrial vacuums meticulously crafted to adhere to NFPA 652 housekeeping standards, essential for gathering combustible dust in Class I, Group D, and Class II, Groups E, F & G environments or non-classified settings. Our pneumatic vacuums are meticulously engineered to fulfill safety criteria for deployment in hazardous surroundings. Leveraging advanced filtration technology, Nilfisk ensures the secure capture of combustible materials scattered throughout your facility, ranging from fuels, solvents, and metal dust to flour, sugar, and pharmaceutical powders. Read More

  • HAZ LO HEADLAMPS

    With alkaline or rechargeable options, these safety rated, Class 1, Div. 1 Headlamps provide long runtime with both spot and flood options in the same light. Work safely and avoid trip hazards with flexible hands-free lighting from Streamlight. Read More

  • Preventative Heat Safety

    Dehydration and heat exposure impair physical and cognitive performance. Proper hydration boosts heat stress resilience, but hydration needs are highly individualized and hard to predict across a workforce. Connected Hydration® empowers industrial athletes to stay safe through behavioral interventions, informed by sports science, and equips safety teams with critical insights to anticipate high-risk situations and adapt to evolving environmental factors. Curious about applying the latest in sports science based hydration strategies for industrial athletes? Stop by booth #1112 at AIHA or schedule a free demo today at https://epcr.cc/demo. Read More

Featured

Artificial Intelligence

Webinars