NRC Blog Explains Value of Scale Model Cask Testing

Bernard White, senior project manager in the Division of Spent Fuel Storage and Transportation, says practicality, not cost, is the main reason to use it.

Bernard White, a senior project manager in the Nuclear Regulatory Commission's Division of Spent Fuel Storage and Transportation, writes in a recent post to the agency's blog that practicality, not cost, is the main reason to use scale models when testing the safety of casks used to transport the most radioactive cargo, including spent nuclear fuel. White writes that casks are evaluated, using scale models or components of the casks, for their ability to withstand vibration, water spray, free fall, stacking, penetration, and fire.

"The bottom line is scale-model testing provides the necessary information for the NRC staff to know that a cask loaded with spent fuel can be transported safely, even in the event of an accident," he explains. "Cost savings is a factor, but not the most important one. The biggest reason for using scale models is practicality. Transport casks for spent nuclear fuel are typically in the 25-ton to 125-ton range. There are very few testing facilities in the world that can put a 125-ton cask through the required tests. For example, during 30-foot drop test, the test cask must strike the surface in the position that would cause the most severe damage. Cask designers often perform several drops to ensure they identify the correct position. After the 30-foot drop, the cask is dropped 40 inches onto a cylindrical puncture bar, then placed in a fully-engulfing fire for 30 minutes. Casks are also immersed in water to ensure they don't leak. Measurements from these tests are plugged into computer programs that analyze the cask structure in great detail."

His article points out that NRC regulations specify that in the 30-foot drop test, the cask must hit an "unyielding" surface. "In a real-world accident, a 125-ton cask would damage any surface significantly. It requires considerably more engineering work to achieve an unyielding surface for a full-sized cask than for a scale model, with no measurable advantage. The rule-of-thumb for testing is the impact target should be 10 times the mass of the object that will strike it. So a 125-ton cask would need to hit a 1,250 ton surface. A 30-ton cask would only need a 300-ton target," White writes. "Scale models are easier to handle and can be used efficiently for many drop orientations to meet the multiple test requirements. If a test needs to be run again, it can be done much more easily with a scale model. Design changes are also more easily tested on models. Together with extensive analyses of a cask's ability to meet our regulatory requirements, the information from these tests allows the NRC to decide whether a cask can safely transport the radioactive contents."

Download Center

  • Safety Metrics Guide

    Is your company leveraging its safety data and analytics to maintain a safe workplace? With so much data available, where do you start? This downloadable guide will give you insight on helpful key performance indicators (KPIs) you should track for your safety program.

  • Job Hazard Analysis Guide

    This guide includes details on how to conduct a thorough Job Hazard Analysis, and it's based directly on an OSHA publication for conducting JHAs. Learn how to identify potential hazards associated with each task of a job and set controls to mitigate hazard risks.

  • A Guide to Practicing “New Safety”

    Learn from safety professionals from around the world as they share their perspectives on various “new views” of safety, including Safety Differently, Safety-II, No Safety, Human and Organizational Performance (HOP), Resilience Engineering, and more in this helpful guide.

  • Lone Worker Safety Guide

    As organizations digitalize and remote operations become more commonplace, the number of lone workers is on the rise. These employees are at increased risk for unaddressed workplace accidents or emergencies. This guide was created to help employers better understand common lone worker risks and solutions for lone worker risk mitigation and incident prevention.

  • EHS Software Buyer's Guide

    Learn the keys to staying organized, staying sharp, and staying one step ahead on all things safety. This buyer’s guide is designed for you to use in your search for the safety management solution that best suits your company’s needs.

  • Vector Solutions

OH&S Digital Edition

  • OHS Magazine Digital Edition - June 2022

    June 2022

    Featuring:

    • SAFETY CULTURE
      Corporate Safety Culture Is Workplace Culture
    • HEAT STRESS
      Keeping Workers Safe from Heat-Related Illnesses & Injuries
    • EMPLOYEE HEALTH SCREENING
      Should Employers Consider Oral Fluid Drug Testing?
    • PPE FOR WOMEN
      Addressing Physical Differences
    View This Issue