Tiny Sensor Could Quickly Detect Hazardous Chemicals

Massachusetts Institute of Technology engineers are developing a tiny sensor that could be used to detect minute quantities of hazardous gases, including toxic industrial chemicals and chemical warfare agents, much more quickly than current devices.

The researchers have taken the common techniques of gas chromatography and mass spectrometry and shrunk them to fit in a device the size of a computer mouse. Eventually, the team, led by MIT Professor Akintunde Ibitayo Akinwande, plans to build a detector about the size of a matchbox.

"Everything we're doing has been done on a macro scale. We are just scaling it down," said Akinwande, a professor of electrical engineering and computer science and member of MIT's Microsystems Technology Laboratories (MTL).

Scaling down gas detectors makes them much easier to use in a real-world environment, where they could be dispersed in a building or outdoor area. Making the devices small also reduces the amount of power they consume and enhances their sensitivity to trace amounts of gases, Akinwande said.

He is leading an international team that includes scientists from the University of Cambridge, the University of Texas at Dallas, Clean Earth Technology and Raytheon, as well as MIT.

Their detector uses gas chromatography and mass spectrometry (GC-MS) to identify gas molecules by their telltale electronic signatures. Current versions of portable GC-MS machines, which take about 15 minutes to produce results, are around 40,000 cubic centimeters, about the size of a full paper grocery bag, and use 10,000 joules of energy.

The new, smaller version consumes about four joules and produces results in about four seconds.

The device, which the researchers plan to have completed within two years, could be used to help protect water supplies or for medical diagnostics, as well as to detect hazardous gases in the air.

Download Center

  • Safety Metrics Guide

    Is your company leveraging its safety data and analytics to maintain a safe workplace? With so much data available, where do you start? This downloadable guide will give you insight on helpful key performance indicators (KPIs) you should track for your safety program.

  • Job Hazard Analysis Guide

    This guide includes details on how to conduct a thorough Job Hazard Analysis, and it's based directly on an OSHA publication for conducting JHAs. Learn how to identify potential hazards associated with each task of a job and set controls to mitigate hazard risks.

  • A Guide to Practicing “New Safety”

    Learn from safety professionals from around the world as they share their perspectives on various “new views” of safety, including Safety Differently, Safety-II, No Safety, Human and Organizational Performance (HOP), Resilience Engineering, and more in this helpful guide.

  • Lone Worker Safety Guide

    As organizations digitalize and remote operations become more commonplace, the number of lone workers is on the rise. These employees are at increased risk for unaddressed workplace accidents or emergencies. This guide was created to help employers better understand common lone worker risks and solutions for lone worker risk mitigation and incident prevention.

  • EHS Software Buyer's Guide

    Learn the keys to staying organized, staying sharp, and staying one step ahead on all things safety. This buyer’s guide is designed for you to use in your search for the safety management solution that best suits your company’s needs.

  • Vector Solutions

Featured Whitepaper

OH&S Digital Edition

  • OHS Magazine Digital Edition - July August 2022

    July / August 2022

    Featuring:

    • CONFINED SPACES
      Specific PPE is Needed for Entry and Exit
    • HAZARD COMMUNICATION
      Three Quick Steps to Better HazCom Training
    • GAS DETECTION
      Building a Chemical Emergency Toolkit
    • RESPIRATORY PROTECTION
      The Last Line of Defense
    View This Issue